
ASEE 2014 Zone I Conference, April 3-5, 2014, University of Bridgeport, Bridgpeort, CT, USA.

Reverse Engineering the Volcano CAN BUS
Framework for Engine Control Unit Programming

Robert A. Hilton
Department of Electrical and Computer Engineering

University of Hartford
West Hartford, Connecticut

robert.a.hilton.jr@gmail.com

Abstract— The goal of this project is to design a combination
ISO 9141 (K-Line) and CAN BUS (Controller Area Network Bus)
interface in order to load new software into an engine control
unit through the diagnostics connector of a vehicle. The specific
platform target is a 2006 Volvo S60R. This vehicle requires a
high-speed CAN BUS (500kbps) connection and a medium-speed
CAN BUS (125kbps) connection. In most older vehicles, the wires
in the diagnostics connector are not directly connected to the
engine control unit, requiring all data to pass through a CEM
(central electronic module), which requires an ISO 9141 keep-
alive message to keep the CAN BUS communication path open.
This presents the need for custom hardware that is capable of
both ISO 9141 and CAN BUS communication, and there are very
few devices that exist in the industry that can perform this task.
Most devices are impractical, mostly due to the expense. After the
hardware was developed, custom software was written for a
computer operating system platform in order to actually
communicate with the car. This particular test vehicle did not
require an ISO 9141 keep-alive message to open the CAN
channel, so even though the device is capable of applying the ISO
9141 signal, research efforts were focused on programming the
ECU with the CAN BUS. The chosen design successfully
accomplished the goal and was able to flash the chosen ECU in
approximately 100 seconds, which is approximately 10 seconds
faster than a flash done with the factory Volvo tool for the same
purpose.

Keywords—CAN BUS, CEM, ECU, ISO 9141, Volcano, Volvo

I. INTRODUCTION
Many car owners have a desire to be able to reprogram

(flash) the software in their vehicles’ Engine Control Unit
(ECU) through the diagnostics connector [1]. A vehicle owner
may want to have different versions of this software; one
could be for increased performance while another could be for
fuel economy, etc.

Unfortunately, devices to program new software into an
ECU may not be available for a specific make and model. In
addition the devices that are available can cost upwards of
$1200 and can be difficult to obtain.

The immediate goal of this project was to target a specific
make and model vehicle and develop a device that can load
new control software into the ECU. The eventual goal of this

project is to create a generic programmer that can be used to
load software into most makes and models of cars.

This device will implement two communication
specifications. The first standard is known as CAN BUS
(Controller Area Network Bus). This protocol is a differential
asynchronous serial protocol in which many modules reside on
a single bus. The design of the bus is such that if two or more
modules transmit at the same time, the dominant output of all
of the modules is used. An output is considered to be dominant
if a module is asserting a signal on the bus. The resting voltage
for both CAN BUS wires CAN H and CAN L is such that the
difference between the two is less than a certain voltage. This
is considered a recessive bit and is considered a logical 1.
When a dominant bit is asserted (logical 0), CAN H and CAN
L are driven and the difference between the two is increased
above the minimum detection threshold. The second standard
is known as K-Line or ISO 9141 [2]. This is a simple
asynchronous serial communication standard that uses a single
line for both transmit and receive. Both of these standards are
common in vehicle communication, however each
manufacturer’s specific use of these standards is different. As
such, software must be written specifically for each model of
vehicle. The chosen test vehicle (a 2006 Volvo S60R) contains
two CAN BUS networks [3]. Specific hardware needs to be
chosen to support this configuration. Many Volvo models
manufactured between the years 1999 and 2007 use a
communication layer over CAN BUS called Volcano [4]. The
commands that were reverse engineered to complete this
project belong to the Volcano command set and are universal
to most vehicles that implement this communication layer.
Therefore, this particular design will be able to support most
models of Volvos between these years.

II. METHODS AND MATERIALS
Much of the information gathered for this project has come

from reverse engineering pre-existing equipment. A data-
logging device was connected to the CAN BUS while the
original factory tool designed by Volvo programmed the ECU
of the car. This information was then analyzed and compared
with data from production devices and an open source project
[5] to further understand the communication layer. The
hardware created in this project is based on a

PIC32MX795F512L microcontroller (PIC32) connected to an
FTDI (Future Technology Devices International) USB
(Universal Serial Bus) to UART (Universal Asynchronous
Receiver/Transmitter) device for communication with the host
computer. There are two CAN BUS transceivers and a K-Line
(ISO 9141) interface to add flashing compatibility to older
vehicles. For initial testing purposes, a development board was
chosen to implement the program on as a proof of concept.
The development board chosen was a chipKIT Max32 board
with a chipKIT Network Shield from Digilent Inc. In future
research, the microcontroller side of the computer
communication will be changed from UART to SPI (Serial
Peripheral Interface).

III. RESULTS
In order to decode the communication framework known as

Volcano, multiple devices that contain this functionality were
examined. A CAN BUS packet logger was programmed on the
development board to intercept all traffic related to ECU
flashing. The operation speed of the “high speed” CAN BUS
was 500kbps and the operation speed of the “medium speed”
CAN BUS was 125kbps in the test vehicle. Due to this high
data transmission speed, a comparable serial baud rate of
460800 was chosen (approx. 450kbps). Because the baud rate
of the serial connection is lower than the baud of the CAN
BUS, the software was designed to use a FIFO (First In First
Out) buffer to hold the CAN BUS packets and then retransmit
them over serial (UART) when the device was capable of
doing so. CAN filters were disabled so that all packets on the
bus were logged. An issue was encountered in which the data
transmission during the flashing procedure was too fast for the
PIC32 to keep up with while printing to the serial port. Packets
were dropped when the FIFO buffer overflowed. However,
enough information was received during the capture to infer
the required missing information. This issue will be fixed
when the computer communication is switched from UART to
SPI.

Fig. 1 - Sample output from the CAN packet logger

The packets with an EID (Extended CAN Identifier) of

0xFFFFE are packets sent from the diagnostic tool. Packets
with an EID of 0x21 are responses from the ECU. All of these
responses were examined and categorized. Determinations
were then made as to the function of the command. For
example, we can see the command 7A 9C 00 31 C0 00 00 00.
From the structure of the previous and following commands,
we can assume that 7A is the module address of the ECU,
since all packets sent only to the ECU are prefixed with this

byte. We can then infer that the second byte is a function to
perform. In figure 1, the byte 9C is showing that the ECU
needs to jump to the memory address 0x31C000. Once the
first commands were identified, simple assumptions were
made concerning the function of the remaining commands and
then tested and verified. Corrections were made where
necessary. Results were compared with a pre-existing open-
source project [5], however the open-source project was never
finished.

After the basic command set of the ECU was determined, a
library of these commands was created. These commands are
referenced multiple times from the main firmware of the
PIC32. It was determined that the main flash areas of the ECU
could be split into 24kB segments and transmitted to the PIC
from the computer. This data is stored in the PIC’s RAM
(Random Access Memory) until the entire 24kB array is built.
Once each segment transfer is completed, the data is
transmitted to the ECU. The entire ECU file is 1MB, however
there are regions of the ECU that are not modified. The flash
area from 0x0 to 0x8000 contains the PBL (Primary Boot
Loader) [6], of the ECU. This section contains the main
execution code for the ECU and is required to stay the same
during the CAN flashing process. All addresses from 0xE000
to 0x10000 point to the internal processor RAM, called
XRAM. By definition, the RAM is volatile so there is no point
in flashing data to that space. This results in a smaller amount
of data being transferred over the CAN BUS, with the size
shown in Eq. 1.

Since the data block size is chosen as 24kB, we can determine
the number of blocks required to be sent (Eq. 2).

Fig. 2 – The graphical user interface of the software

EID:0xFFFFE 0xFF 0x86 0x00 0x00 0x00 0x00 0x00 0x00
EID:0xFFFFE 0xFF 0x86 0x00 0x00 0x00 0x00 0x00 0x00
EID:0xFFFFE 0x7A 0xC0 0x00 0x00 0x00 0x00 0x00 0x00
EID:0x21 0x7A 0xC6 0x00 0x00 0x00 0x00 0x04 0x04
EID:0xFFFFE 0x7A 0x88 0x00 0x00 0x00 0x00 0x00 0x00
EID:0x21 0x7A 0x8E 0x00 0x00 0x30 0x66 0x84 0x78
EID:0xFFFFE 0x7A 0x9C 0x00 0x31 0xC0 0x00 0x00 0x00
EID:0x21 0x7A 0x9C 0x00 0x31 0xC0 0x00 0x84 0x78
EID:0xFFFFE 0x7A 0xAE 0xE6 0xF4 0x60 0x16 0xF0 0x27
EID:0xFFFFE 0x7A 0xAE 0xF0 0x50 0xF0 0x61 0xF0 0x73

0x100000 – 0x8000 – 0x2000 = 0xF6000 = 984kB (1)

984kB / 24kB = 41 (2)

The programming of the ECU was split into two separate
parts. There is a firmware component that runs on the PIC32
and a software component that controls the data sent to the
PIC32, which provides a GUI (Graphical User Interface). The
serial communication between the PIC32 and the computer
was designed such that the menu is ASCII (American
Standard Code for Information Interchange) driven so the
logging functionality of the firmware can be used with any
serial client rather than requiring a specific software program
to be able to interpret the results.

Fig. 3 – A demonstration of the ASCII menu compatibility using a popular
serial client.

The software allows the user to select a CAN BUS speed

and choose a binary file to flash to the ECU. It also contains
functionality to update the checksums of the binary file. These
checksums exist to protect against incorrect programming.
When a binary file is modified, these checksums need to be
updated to reflect the programming changes. This is done so
that modified binary files that were manipulated for the
purposes of engine tuning will load successfully. The
algorithm is open source [5].

On older model cars, an additional type of communication
is required in order to connect to the CAN BUS. The CEM
module blocks all traffic from the diagnostics connector to the
CAN BUS, unless an ISO 9141 device sends a keep-alive
message [7]. However, the chipKIT board does not have an
ISO 9141 transceiver available, however. Instead, a separate
board was made to handle the ISO 9141 signal and convert it
to a UART compatible form [8].

Fig. 4 – The ISO 9141 transceiver breakout board.

Successful flashing of the ECU was verified. Many different
model years (2001, 2002, 2004, 2006) of ECU were tested to
verify that the software was compatible with all.

Fig. 5 – The full design on the chipKIT max32 board.

IV. CONCLUSION
The goal of this project was to design a hardware tool that is

capable of reloading the software on an engine control unit
through the vehicle diagnostics connector. The device
described has successfully completed this task. The results of
the reverse engineering of the Volcano framework are shown
in table 1. The flash time was faster than the factory flash tool
using the factory software by an average of 10 seconds. This
inspired the question how fast can a flash be done? Using a
heavily modified version of a J2534 library, new flash
software was implemented for the factory Volvo flash tool
known as a DiCE. Once the new software was tweaked
appropriately, a full flash was completed in 81 seconds. This
was, on average, about 29 seconds faster than the factory
Volvo tool and software and 19 seconds faster than the
chipKIT flash tool. This shows that there is some room for
improvement in the flash time of the chipKIT flash tool.

TABLE I. ECU CAN BUS COMMANDS (ALL VALUES IN HEX)
 EID D1 D2 D3 D4 D5 D6 D7 D8

Whole Bus
Silence

FFFFE FF 86 00 00 00 00 00 00

Whole Bus
Reset

FFFFE FF C8 00 00 00 00 00 00

ECU Reset FFFFE 7A C8 00 00 00 00 00 00
Start PBL FFFFE 7A C0 00 00 00 00 00 00
Response

PBL
Started

21 7A C6 xxa xx xx xx xx xx

Run Code
Segment at

Jump
Point

FFFFE 7A A0 00 00 00 00 00 00

Response
Code

Running
At Jump

Point

21 7A A0 xx xx xx xx xx xx

Jump To
Address

FFFFE 7A 9C 00 Address 00 00

Response
Jumped to

Address

21 7A 9C xx xx xx xx xx xx

Erase FFFFE 7A F8 00 00 00 00 00 00
Response
Erased

21 7A F9 xx xx xx xx xx xx

Send Data FFFFE 7A AE Data
End Data

Get
Checksum

FFFFE 7A B4 00 Initial Address + Data
Length

00 00

Response
Data

Checksum

21 7A B1 Chk
Sum

xx xx xx xx xx

Set End
SBL

(Secondary
Boot

Loader)

FFFFE 7A A8 00 00 00 00 00 00

a.xx indicates the value at this location is irrelevant.

V. FUTURE WORK
There are many improvements that can be made to this tool.

The first improvement would be to design a dedicated board,
rather than using a development board. Using a USB to SPI
interface rather than UART would improve data transmission
speeds for software flashing and for logging. Another
improvement that could be made would be to include an SPI
flash storage module for storing different ECU binary files.
Using this method, a hardware menu interface could be
designed and the device would not require a connection to the
computer; it could function as a standalone unit.

ACKNOWLEDGMENTS
I would like to express my deepest gratitude to Ying Yu, my

research supervisor, for her encouragement and guidance. I
would also like to thank John Currie for his constant guidance
and support. I extend my appreciation to Bent Aadne Ose for
helping to answer my endless questions. I would like to thank
Timothy Zimmerman for forcing me to continue my research
when my level of frustration became too high and I felt like it
was impossible to succeed. I would also like to thank R.
Arnold for sharing his apparent lack of knowledge on this
research topic and for driving me to complete my research
with such a high level of success. And finally, I would like to
thank Saeid Moslehpour and Hisham Alnajjar for ensuring I
had the resources necessary to complete this research.

REFERENCES
[1] Society of Automotive Engineers, “SAE J1962: Diagnostic Connector

Equivalent to ISO/DIS 15031,” 2001.
[2] Accutest, “K-Line Protocol.” pp. 1–4, 1998.
[3] Volvo Corporation, “Volvo 2006 S60R Wiring Diagram,” Volvo Wiring

Diagrams, vol. TP 3988202, pp. 34–39, 2006.
[4] L. Casparsson, A. Rajnak, K. Tindell, and P. Malmberg, “S80 networks

Technical concepts,” Volvo Technology Report, pp. 1–14, 1998.
[5] Dilemma, “MotronicCommunication.” pp. 1–30, 2011.
[6] Mentor Graphics, “Volcano Bootloader.” pp. 1–2, 2007.
[7] Olaf, “Our mysterious friend, CAN bus,” 2013. [Online]. Available:

http://hackingvolvo.blogspot.com/2012/11/our-mysterious-friend-can-
bus.html.

[8] STMicroelectronics, “Monolithic bus driver with ISO 9141 interface -
L9637,” pp. 1–15, 2013.

